The Black-Scholes Model is a foundational framework in quantitative finance used to determine the fair value of European-style options. It assumes that the underlying asset follows a geometric Brownian motion with constant volatility and interest rates.
S
– Current stock priceK
– Strike priceT
– Time to expiration (in years)r
– Risk-free interest rateq
– Dividend yieldσ
– Volatility of the underlying assetN(x)
– Cumulative distribution function of the standard normal distribution
Define:
d₁ = [ln(S/K) + (r − q + σ²/2)·T] / (σ·√T)
d₂ = d₁ − σ·√T
C = S·e−qT·N(d₁) − K·e−rT·N(d₂)
P = K·e−rT·N(−d₂) − S·e−qT·N(−d₁)
Δcall = e−qT·N(d₁)
Δput = e−qT·(N(d₁) − 1)
Γ = [e−qT·N′(d₁)] / (S·σ·√T)
Θcall = [−S·σ·e−qT·N′(d₁)] / [2·√T] − r·K·e−rT·N(d₂) + q·S·e−qT·N(d₁)
Θput = [−S·σ·e−qT·N′(d₁)] / [2·√T] + r·K·e−rT·N(−d₂) − q·S·e−qT·N(−d₁)
ν = S·e−qT·√T·N′(d₁)
ρcall = K·T·e−rT·N(d₂)
ρput = −K·T·e−rT·N(−d₂)
Note: N′(d₁)
is the standard normal probability density function: N′(x) = (1 / √(2π)) · e−x²/2